Integral Inequality for Minimaxity in the Stein Problem
نویسندگان
چکیده
In the estimation of a multivariate normal mean, it is shown that the problem of deriving shrinkage estimators improving on the maximum likelihood estimator can be reduced to that of solving an integral inequality. The integral inequality not only provides a more general condition than a conventional differential inequality studied in the literature, but also handles non-differentiable or discontinuous estimators. The paper also gives general conditions on prior distributions such that the resulting generalized Bayes estimators are minimax. Finally, a simple proof for constructing a class of estimators improving on the James-Stein estimator is given based on the integral expression of the risk.
منابع مشابه
Estimation of the mean vector in a singular multivariate normal distribution
This paper addresses the problem of estimating the mean vector of a singular multivariate normal distribution with an unknown singular covariance matrix. The maximum likelihood estimator is shown to be minimax relative to a quadratic loss weighted by the Moore-Penrose inverse of the covariance matrix. An unbiased risk estimator relative to the weighted quadratic loss is provided for a Baranchik...
متن کاملResults of the Chebyshev type inequality for Pseudo-integral
In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results to the case of comonotone functions.
متن کامل`p-norm based James-Stein estimation with minimaxity and sparsity
A new class of minimax Stein-type shrinkage estimators of a multivariate normal mean is studied where the shrinkage factor is based on an `p norm. The proposed estimators allow some but not all coordinates to be estimated by 0 thereby allow sparsity as well as minimaxity. AMS 2000 subject classifications: Primary 62C20; secondary 62J07.
متن کاملA Version of Favard's Inequality for the Sugeno Integral
In this paper, we present a version of Favard's inequality for special case and then generalize it for the Sugeno integral in fuzzy measure space $(X,Sigma,mu)$, where $mu$ is the Lebesgue measure. We consider two cases, when our function is concave and when is convex. In addition for illustration of theorems, several examples are given.
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کامل